熱門搜尋 :
汽車電子工業隨著電動車先進駕駛輔助系統(Advanced Driver Assistance System, ADAS)不斷提升,加上與第五代行動通訊(5G)互相搭配而日趨蓬勃發展。自駕車依照SAE J3016對自駕車的分類由Level 0至Level 5,目前各廠家的自駕等級約在Level 2及Level 3,預計在2025年之前,將會出現無論在任何路況、任何環境均可達Level 5的自駕車行駛於路面。
近幾年,穿戴式裝置提供越來越多生理監測功能,甚至強調「全天候」監測。而隨著使用者配戴時間拉長,裝置的安全性也更顯重要,從電池、材質、裝置溫度到資訊安全,都成為安全標準規範的範圍。
設計與實現一個光學心率監測(HRM)系統(又稱光體積變化描記圖法,簡稱PPG)是一項複雜、涉及多個領域的專案。設計要素包括人體工程學、訊號的處理與過濾、光學和機械設計、低雜訊訊號接收電路,以及產生低雜訊脈衝電流。
2018年6月國際標準組織第三代合作夥伴計畫(3GPP)全會(TSG#80)批准了第五代新無線電(5G NR)行動通訊技術標準獨立式(SA)功能凍結,這意味著5G標準按時完成,5G網路商用進程隨之開啟。
無線藍牙耳機的音訊市場正在快速成長。人們已經習慣了無線音訊系統,行動電話產業正在邁向一個沒有音訊連接器和線纜的世界。大部分的一般使用者在想到藍牙音訊時,出現的畫面多是笨拙的耳罩式耳機,且少有額外功能。
隨著自動駕駛車時代的逼進,半導體公司也踏進了相關標準、方法、設計方案等重要討論的核心。無論是傳統汽車製造商或新成立的汽車創新廠商,都在問:「半導體公司如何打造自動駕駛汽車?」
隨著第五代行動通訊網路(5G)預計將會在2019年及2020年陸續提供網路商用服務,因此手持行動通訊裝置的製造商需要了解其產品(手機、平板、穿戴式裝置等)在5G毫米波(mmWave)空中下載(Over The Air, OTA)的射頻(Radio Frequency, RF)測試方法有哪幾種方式已經被國際標準組織(3GPP:the 3rd Generation Partnership Project/CTIA:Cellular Telecommunications and Internet Association)允許接受使用,並且讓研發工程師清楚的知道在驗證其產品時需要測試的項目有哪些。
最近物聯網(IoT)相關的文章充斥在許多電子工程雜誌或期刊,數量上也堪稱不計其數。眾所周知雖然物聯網的服務五花八門包羅萬象,但有些基礎的特性卻都是大同小異。舉例來說,不論該技術的應用為何,可以肯定的是,需要持續存取不斷增加的大量數據,以利後續的分析、操作和比較。因此如何處理這些數據是至關重要的。
近年來,隨著物聯網(IoT)與大數據(Big Data)分析技術的快速發展,使得原先僅擁有計步器等簡單功能的穿戴式裝置正快速演進至能夠感知與擷取資料的智慧化穿戴式裝置。從具感測心率、體溫與血壓的監測器到夜視裝置,甚至平視成像顯示器等,智慧穿戴式裝置已儼然成為消費性、醫療保健、軍事和工業市場的一部分。
過去這段日子以來,無論走到何處,似乎都可以聽到有人談論工業物聯網(IIoT),甚至從這項趨勢衍生而出的特定應用,也開始在各個產業嶄露頭角。舉例來說,工業4.0就是專為生產設備而發展出來的概念,在現有的電網裡,智慧電網就是工業物聯網的實作案例;而數位油井,則是石化及天然氣產業的工業物聯網實作案例。儘管這些衍生自工業物聯網的應用各自擁有專屬詞彙與流程,但是其中所涵蓋的技術和優勢大致相同。另外,雖然各大企業無不積極導入工業物聯網以求發揮其潛能,但是要精準預測500億個裝置能否在2020年順利完成串連,仍還比較難預測[1]。根據專家預估,2015至2025年之間部署的全新聯網裝置當中,有將近半數將來自工業領域[2]。也就是說,在工廠、測試實驗室、電網、煉油廠,乃至於基礎建設中實作工業物聯網的作業,都是由工程師與科學家擔任主導角色。
將相位陣列雷達與主動電子掃瞄陣列(AESA)運用與部署在航太與國防市場已足足十年有餘,這段期間,已經從最開始採用類比波束成形系統持續轉移至更高等級的數位波束成形。系統工程的目標也持續要求近距元素式(Near Elemental)數位波束成形設計,以達到最大的彈性與可程式化能力。然而要轉移至近距元素式數位波束成形必須克服許多挑戰,包括從校正、數位控制、時脈分布、本地振盪(LO)、功率、處理資料量、一直到電子元件的物理尺寸限制。射頻IC在無線通訊產業的多層面進展持續造就出更高整合度的RF設計,如今實際建置在數位波束成形陣列的每個元素已成為事實。
工業4.0(Industry 4.0)為未來的工廠帶來一個新願景,在這些未來工廠中,安全至關重要。功能安全(Functional Safety)象徵用戶的信心,其確保設備在要求正常運行時能夠執行其安全機能。相較於其他形式的安全性,其更貼近於實用層面。由於積體電路(IC)是建置功能安全的基礎,因此IC也就成為工業4.0的基石。
打造便利的行動生活是科技技術不斷更新的首要目標。目前貼進人身的行動裝置,也皆已走向通訊無線化發展的里程,下一步正朝著電力無線化發展的趨勢邁進,而共振式無線電力傳輸就是一項打破距離框架,實現無線充電的關鍵技術。
無線充電技術不斷推陳出新,其功率與效率也日益精進,滿足更多元的應用需求,包含智慧穿戴、智慧醫療,甚至是機器人等類型。本文將深入探討如何透過磁共振技術,繼續強化無線充電的效率,為無線充電產業開啟新契機。
近十年來,智慧家庭應用持續發展,上市產品和智慧家庭裝置的數量皆穩定成長。Futuresource Consulting近期發表的調查報告指出,全世界的智慧家庭裝置今(2018)年銷售額將達60億美元,預測至2021年,銷售額可望成長三倍。
無線技術上的進步為柔性電子學開闢了新的機會。近場通訊(NFC)可以實現雙向的短程無線通訊,屬於一類新興的技術,其市場定位是形成柔性印刷型感測器系統的架構。印刷型NFC感測器設備,例如穿戴式的溫度監測器或篡改偵測設備等,並不需要在電路板上提供電源、插頭或有線的連接方式。整合晶片在靠近具有NFC功能的讀取器或蜂巢式設備時才會啟動。生產NFC感測器系統需要NFC功能零件及感測器功能零件。現在,通過採用印刷型銀柔性製造和組立製程,可以提高這兩類主要的功能元件的製作效率。
得益於高級駕駛輔助系統(ADAS),汽車駕駛正在變得越來越安全。這些系統中的攝影機與感測器、成熟演算法和微處理器相結合,可以在發現道路上的障礙物時提醒駕駛員、必要時幫助煞車、指示盲區等。為確保正確工作,ADAS應用要求供電電源符合特定精度以及負載瞬態回應的要求。本文探討確保汽車電池電壓正確調節所需的條件,以便為惡劣環境下的ADAS攝影機、感測器和處理器有效地供電。
電動汽車能順利行駛於道路,關鍵要素在於電池是否能供應足夠的電力,同時維持穩定供電。基於此,電動車續航力問題一直以來備受關注,也間接刺激車用無線充電發展,期能透過車用無線充電,滿足電動車不間斷充電效能。
去年由Apple iPhone 8/8+/X帶動起無線充電的熱潮,加上2018年iPhone的三支新款手機也內建Qi無線充電,使得無線充電市場如乘火箭,成長動能相當強勁。根據WPC市調分析指出,內建無線充接收器的手機於2017年出貨總計有3億台,而2018年預估有5億台,到了2020預估將突破單年出貨10億台。而發射器於2017年總計出貨7,500萬台,並於2018突破1億台,這也讓國內外半導體業者相繼投入相當大的資源來研發新的IC方案,加上產品開發進入門檻低,成為近期製造廠中最熱門的話題產品(圖1)。
中高功率無線充電主要的工作頻率約在100kHz,其電磁能量會讓金屬物質產生劇烈加熱反應,因此有必要在開始無線充電之前,先檢測TX與RX之間是否有金屬異物存在。這裡將介紹在TX上進行的異物檢測(FOD)技術,若有害金屬則事前移除,避免發生災害。
Featured Videos
Upcoming Events
Hot Keywords
本站使用cookie及相關技術分析來改善使用者體驗。瞭解更多