熱門搜尋 :
打造便利的行動生活是科技技術不斷更新的首要目標。目前貼進人身的行動裝置,也皆已走向通訊無線化發展的里程,下一步正朝著電力無線化發展的趨勢邁進,而共振式無線電力傳輸就是一項打破距離框架,實現無線充電的關鍵技術。
無線充電技術不斷推陳出新,其功率與效率也日益精進,滿足更多元的應用需求,包含智慧穿戴、智慧醫療,甚至是機器人等類型。本文將深入探討如何透過磁共振技術,繼續強化無線充電的效率,為無線充電產業開啟新契機。
近十年來,智慧家庭應用持續發展,上市產品和智慧家庭裝置的數量皆穩定成長。Futuresource Consulting近期發表的調查報告指出,全世界的智慧家庭裝置今(2018)年銷售額將達60億美元,預測至2021年,銷售額可望成長三倍。
無線技術上的進步為柔性電子學開闢了新的機會。近場通訊(NFC)可以實現雙向的短程無線通訊,屬於一類新興的技術,其市場定位是形成柔性印刷型感測器系統的架構。印刷型NFC感測器設備,例如穿戴式的溫度監測器或篡改偵測設備等,並不需要在電路板上提供電源、插頭或有線的連接方式。整合晶片在靠近具有NFC功能的讀取器或蜂巢式設備時才會啟動。生產NFC感測器系統需要NFC功能零件及感測器功能零件。現在,通過採用印刷型銀柔性製造和組立製程,可以提高這兩類主要的功能元件的製作效率。
得益於高級駕駛輔助系統(ADAS),汽車駕駛正在變得越來越安全。這些系統中的攝影機與感測器、成熟演算法和微處理器相結合,可以在發現道路上的障礙物時提醒駕駛員、必要時幫助煞車、指示盲區等。為確保正確工作,ADAS應用要求供電電源符合特定精度以及負載瞬態回應的要求。本文探討確保汽車電池電壓正確調節所需的條件,以便為惡劣環境下的ADAS攝影機、感測器和處理器有效地供電。
電動汽車能順利行駛於道路,關鍵要素在於電池是否能供應足夠的電力,同時維持穩定供電。基於此,電動車續航力問題一直以來備受關注,也間接刺激車用無線充電發展,期能透過車用無線充電,滿足電動車不間斷充電效能。
去年由Apple iPhone 8/8+/X帶動起無線充電的熱潮,加上2018年iPhone的三支新款手機也內建Qi無線充電,使得無線充電市場如乘火箭,成長動能相當強勁。根據WPC市調分析指出,內建無線充接收器的手機於2017年出貨總計有3億台,而2018年預估有5億台,到了2020預估將突破單年出貨10億台。而發射器於2017年總計出貨7,500萬台,並於2018突破1億台,這也讓國內外半導體業者相繼投入相當大的資源來研發新的IC方案,加上產品開發進入門檻低,成為近期製造廠中最熱門的話題產品(圖1)。
中高功率無線充電主要的工作頻率約在100kHz,其電磁能量會讓金屬物質產生劇烈加熱反應,因此有必要在開始無線充電之前,先檢測TX與RX之間是否有金屬異物存在。這裡將介紹在TX上進行的異物檢測(FOD)技術,若有害金屬則事前移除,避免發生災害。
碳化矽(SiC)開關對於電源轉換器在尺寸、重量或效率的差異化方面越來越重要。SiC獨有的材料特性,可設計無少數載子的單極裝置,取代電荷調變IGBT裝置。因此,它可提供最高效率、更快的切換頻率、減少散熱及省空間等優勢,也可降低整體成本。
2018年6月中,國際標準組織第三代合作夥伴計畫(3GPP)在美國聖地牙哥的TSG RAN會議上通過5G NR(New Radio)標準SA(Satandalone,稱獨立組網或獨立5G),意味著第一個完整的5G標準正式出爐,能真正開始實踐5G的技術優勢,提供更多創新的發展機會。
下一代5G網路的願景是:相比現有的4G網路,在容量、覆蓋範圍和連接性方面實現指數等級提升,同時大大降低營運商和用戶的每位元資料成本。圖1顯示了5G技術和網路實現的多項使用案例和服務。
5G的時代即將到來,需要透過非常靈活的技術,來提供超可靠低延遲(uRLLC)、大規模機器類型通訊(mMTC),並透過增強型行動寬頻(eMBB)大幅提升資料速率。當行動通訊業者快速完成5G部署計畫時,晶片組和裝置製造商也必須加快其開發工作,包括確認如何測試5G資料傳輸速率,才是最有效的方法。本文將透過應用案例點出業者所面臨的技術問題,並提出相關的量測方案,協助解決其挑戰。
第五代(5G)無線存取網路是為了滿足對容量不斷成長的需求,以及2020年之後新的使用情境與應用。5G新無線電技術(NR)針對每位用戶高達10Gbps的最高資料傳輸率,提供增強型行動寬頻(eMBB)服務,與第四代無線網路相比,約提升100倍。大規模MIMO,或稱大規模陣列天線(Massive MIMO)是達成效能提升的關鍵技術,尤其適合於6GHz以下不常使用的時分雙工(TDD)頻段,如Band 40(2.3GHz)、Band 41(2.5GHz)、Band 42(3.5GHz)、Band 43(3.7GHz),以及尚未授權的新興頻段。
5G是下一代行動網路技術,具有超高速、低延遲和出色的可靠性。5G新無線電(5G New Radio, 5G NR)具有低延遲和超可靠連接的能力,可滿足構成物聯網(IoT)之大量不同連接要求的設備,滿足不同產業的應用,包括工業物聯網(IIoT)、智慧電網、車聯網應用等。
從最初以來,無線電設計者面臨其中一項最大挑戰就是頻寬的限制。早期的無線電先趨者認為高於數百kHz的頻率沒有利用價值,理由是偵測元件的性能無法感測到如此高的頻率。包括Branly、Fessenden、Marconi在內的先鋒努力解決這個難題,最後是由Armstrong與Levy設計出完善的外差法(Heterodyning),打開了頻譜中更高頻率的應用大門,因為把這些高頻率降轉(Downconverting)至較低的頻率,偵測元件就能運用當時的技術成功感測。而更高的頻率則是運用超外差(Super-heterodyning)程序打開應用大門。因此,嚴格來說,實際上頻寬資源仍然是有限的。
2018年6月,全球各大營運商、局端業者、手機業者、晶片業者、研究單位等在國際行動標準組織3GPP第80次RAN全會,共同完成5G標準第一個版本-R15。後續將在一年半的時間內強化5G標準R16版本,預計於2019年12月完成,這將是滿足國際電信聯盟(ITU)IMT-2020全部指標要求的完整5G標準。
隨著第一波的行動網路業者推出全國性的LTE Cat M1和NB-IoT通訊網路,設備製造商也忙於開發可滿足新興市場需求的解決方案。成功的解決方案將受益於全球適用的智慧裝置,可配置為最適合的蜂巢式技術和網路,並利用功率最佳化的裝置管理和通訊協定,來簡化部署、營運和維護。
Featured Videos
Upcoming Events
Hot Keywords
本站使用cookie及相關技術分析來改善使用者體驗。瞭解更多